LESSON PLAN | Discipline:
Computer Science
& Engg. & E&TC
Engg | Semester:
Third (3rd) | Name of the Faculty: Er Kulamani Jena | |---|---|---| | Subject: Digital Electronics | No. of days per week class allotted: Five (5) | Semester from Date: 15.09.22 to Date: 22.12.22
No. of Weeks: 15 | | WEEK | CLASS DAY | THEORY TOPICS | | st
1 | st
1 | Introduction | | | nd
2 | Number system: binary, octal, decimal, | | | 3 rd | Number system: Hexadecimal, Conversion from one no system to another | | | th
4 | Number system: Conversion from one no system to another | | | 5 th | Arithmetic operation-Addition, Subtraction, Multiplication, Division. | | nd
2 | 1 st | 1's & 2's complement of Binary no& subtraction using complement method. | | | 2 nd | Digital Code & its application Distinguish between weighted & non-weight Code, | | | 3 rd | Binary code,ex-3 code,& gray code | | | 4 th | Logic Gates- AND, OR, NOT-Symbol, function, expression Truth table & timing diagram | | | 5 th | NAND, NOR – Symbol, function, expression Truth table & timing diagram | | 3rd | 1 st | EX-OR & EX-NOR – Symbol, function, expression Truth table & timing diagram | | | nd
2 | Universal Gates & its realisation | | | 3 rd | Boolean algebra, Boolean expression, DE
Morgan's Theorems | | | 4 th | Represent Logic Expression : SOP & POS forms & conversion | | | 5 th | Karnaugh's map (3-4 variable) & minimization of logical expression | | 4th | 1 st | Karnaugh's map (4 variable) & minimization | | | | of logical expression | |-----------------|-----------------|---| | | 2 nd | Karnaugh's map (minimization of logical expression, don't care condition. | | | 3 rd | Review | | | 4 th | Monthly Test | | | 5 th | Half-adders, Full-adder, | | 5th | st
1 | Half subtractor. | | | 2 nd | full-Subtractor. | | | 3 rd | Serial Binary 4 bit adder | | | 4 th | parallel Binary 4 bit adder | | | 5 th | Cont. | | | st
1 | Multiplexers (4:1), | | | 2 nd | DE multiplexers(1:4) | | 6 th | 3 rd | Decoder, Encoder | | | th
4 | Digital Comparator(3 bit) | | | 5 th | Cont. | | 7th | 1 st | Seven segment decoder | | | 2 nd | Cont. | | | 3 | Cont. | | | 4 th | Review class | | | 5 th | Monthly test | | 8th | st
1 | Principles of Flip-Flops operation. Its
Types | | | nd
2 | S.R. Flip Flop using NAND, Latch un clocked | | | 3 rd | S.R. Flip Flop using, NOR Latch un clocked | | 1 | | | |------|-----------------|---| | | 4 th | Cont. | | | 5 th | Clocked SR, flip-flop Symbol, logic Circuit | | 9th | 1 st | Clocked, D, T, flip-flop Symbol, logic Circuit | | | 2 nd | Clocked JK, flip-flop Symbol, logic Circuit | | | 3 rd | Clocked MS-JK flip-flop Symbol, logic Circuit | | | 4 th | Clocked logic Circuit | | | 5 th | truth tables, and application | | | st
1 | Concept of Racing and how it can be avoided | | | 2 nd | Cont. | | 10th | 3 rd | Review class | | | 4 th | Monthly test | | | 5 th | shift registers- SISO, | | | 1 st | Shift registers- SIPO, PISO & PIPO | | | 2 nd | Universal shift register & its application | | 11th | 3 rd | Types of Counter & its applications | | 1101 | 4 th | Binary counter, Asynchronous ripple counters(Up/Down), Decade counter | | | 5 th | Synchronous counter, Ring Counter | | 12th | 1 st | Concept of memories-RAM, ROM, Static RAM, | | | 2 nd | Dynamic RAM, PS RAM | | | rd
3 | Basic concept of PLD & applications | | | 4 th | Review class | | | 5 th | Necessity of A/D & D/A Converter | | 13th | 1 st | D/A conversion using Weighted resistor methods | | | 2 nd | D/A conversion using R-2R Ladder network | | Ē | | | |------|-----------------|--| | | 3 rd | A/D conversion using counter method | | | 4 th | A/D conversion using Successive –
Approximation method | | | 5 th | Cont. | | 14th | 1 st | Monthly test | | | 2 nd | Review class | | | 3 rd | Various logic families & categories according to IC fabrication process | | | 4 th | Characteristics of Digital ICs- propagation Delay, fan-out, fan-in, Power Dissipation, | | | 5 th | Noise margin & power supply requirement with reference to logic families | | 15th | 1 st | speed with reference to logic families | | | 2 nd | Features-Circuit operation & various applications of TTL(NAND) | | | 3 rd | CMOS(NAND) | | | 4 th | CMOS(NOR) | | | 5 th | Review |